Структурная схема преобразователя частоты представлена на (рис. 1.) Преобразователь состоит из следующих основных частей: звена постоянного тока ЗПТ, содержащего неуправляемый выпрямитель с фильтром (рис. 2); мостового трехфазного инвертора, выполненного на IGBT-приборах (рис. 3); системы управления; блока питания БП; датчиков тока ДТ. Выпрямитель осуществляет преобразование трехфазного переменного напряжения сети питания в выпрямленное напряжение постоянной амплитуды 540 В.
Инвертор посредством широтно-импульсного модулирования управления транзисторными ключами преобразует постоянное напряжение в переменное квазисинусоидальное регулируемой частоты f и амплитуды U. Через цепь постоянного тока передается активная мощность из сети к двигателю. Для циркуляции реактивной мощности, которая необходима для создания электромагнитного поля асинхронного двигателя, образуется цепь: обмотки ста-
Рис. 1. Структурная схема преобразователей частоты
|
|
Рис. 2. Принципиальная схема звена постоянного тока (ЗПТ) преобразователя частоты
Rогр — резистор ограничения тока заряда конденсатора; Rторм — тормозной резистор; ТК — транзисторный ключ; Сф — конденсатор фильтра |
тора двигателя — обратные диоды, шунтирующие транзисторные ключи — конденсаторы фильтра. При запирании ключей индуктивные токи замыкаются через диоды на конденсатор фильтра, не вызывая перенапряжений.
Транзисторные ключи управляются драйверами, которые осуществляют гальваническую развязку силовых цепей от цепей управления и защиту транзисторов.
Блок микропроцессорного управления включает в себя (рис. 4) программируемый контроллер (ПК), аналого-цифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи и пульт управления. Контроллер осуществляет широтно-импульсную модуляцию выходного напряжения преобразователя, у которого амплитуда напряжения зависит от частоты (рис. 5):
Рис. 3. Принципиальная схема мостового трехфазного инвертора на IGBT-транзисторах:
Uп1..., Uп4 — напряжение питания цепей управления |
Рис. 4. Функциональная схема блока управления электропривода
где А и В — коэффициенты, которые программируются. |
В контроллере может быть программно реализован пропорционально-интегрально-дифференциальный регулятор технологического параметра (например, напора или расхода воды), который должен контролировать регулируемый электропривод. Сигналы обратной связи по этому параметру вводятся в контроллер через АЦП.
Все параметры, связанные с управлением приводом, заносятся в память контроллера с помощью программирующего устройства или персонального компьютера через интерфейс RS485.
Рис. 5. Зависимость напряжения от частоты преобразователя:
Uн, fн — номинальные соответственно напряжение и частота преобразователя
|
При необходимости преобразователь может обеспечить тормозной режим работы электропривода. Для этого в цепи постоянного тока предусмотрены транзисторный ключ ТК (см. рис. 2) и тормозной разрядный резистор R торм. Энергия торможения двигателя накапливается на конденсаторе фильтра Сф, повышая на нем напряжение. Когда напряжение на Сф достигнет определенного значения, открывается ключ ТК и конденсатор разряжается на тормозной резистор R торм. Резистор R огр в цепи постоянного тока служит для ограничения тока заряда конденсатора фильтра при включении преобразователя в сеть. При дальнейшей работе резистор R огр шунтируется.
Преобразователи частоты имеют различные виды защиты от влияния следующих факторов: перенапряжений по питанию;
повышения напряжения питания;
понижения напряжения питания;
короткого замыкания в нагрузке;
замыкания фазы на землю;перегрева двигателя;
«опрокидывания» двигателя;
перегрузки;
ошибок управления.
Принцип работы частотного преобразователя
В настоящее время большинство преобразователей изготовляют по схеме автономного инвертора напряжения. Это связано с появлением полностью управляемых силовых полупроводниковых приборов: IGB-транзисторов и запираемых тиристоров. Типичная схема электропривода с инвертором напряжения на полностью управляемых приборах дана на рис. 6. Схемной особенностью инвертора напряжения является наличие обратных диодов VD1... VD6 и фильтрового конденсатора С.
В отличие от инверторов тока, для которых характерным является работа в каждый момент времени по одному вентилю в анодной и катодной группах, в инверторах напряжения более целесообразна одновременная работа двух вентилей в одной группе и , одного вентиля в другой группе. При этом продолжительность работы каждого вентиля составляет п. Допустим, что в некоторый момент времени работают транзисторные ключи VT1, VT2 и VT6. Тогда ток протекает по всем трем фазным обмоткам двигателя, причем 2/3 напряжения Ud прикладывается к фазе а и к двум параллельно включенным фазам в и с(рис. 7). При запирании транзисторного ключа VT6 (см. рис. 6) и включении транзисторного ключа VT3 ток в фазе в не может мгновенно измениться и замыкается через диод VD3 на конденсатор С, чем обеспечивается циркуляция реактивной мощности между обмотками двигателя и конденсатором С. После включения транзисторного ключа VT4 ток будет протекать по параллельно включенным фа-
Рис. 6. Схема частотного асинхронного электропривода с транзисторным инвертором напряжения
Рис. 7. Диаграмма работы ключей VT1... VT6 и эпюры линейного и фазного напряжений
Рис. 8. График, поясняющий принцип широтно-импульсной модуляции напряжения и тока фазы автономного инвертора напряжения:
U1, I1 — фазные соответственно напряжение и ток статора; Ud — напряжение
питания; Tk — период ШИМ; T — период частоты выходного напряжения
зам а и с и по фазе в и т.д. Линейное U ав и фазное U а напряжения, прикладываемые к обмоткам двигателя, будут иметь форму, показанную на рис. 7.
Требуемая выходная частота определяется частотой переключения вентилей инвертора и задается каналом регулирования частоты. Регулирование выходного напряжения может выполняться двумя способами:
1) посредством управляемого выпрямителя на входе инвертора, с помощью которого регулируется Ud',
2) использованием способа широтно-импульсного регулирования, осуществляемого вентилями инвертора; в этом случае входной выпрямитель может быть неуправляемым.
Первый способ характеризуется двумя недостатками: ступенчатой формой выходного напряжения (см. рис. 7) и низким коэффициентом мощности преобразователя.
Более эффективным является второй способ. При широтноимпульсном способе регулирования (рис. 8) возможно не только регулирование среднего напряжения за период, но и коррекция формы выходного напряжения U1. Такое регулирование называют широтно-импульсной модуляцией (ШИМ). Она основана на принципе широтно-импульсного регулирования.
Так как при двухполярной коммутации выходное напряжение преобразователя
то, регулируя непрерывно скважность у по синусоидальному закону
можно получить среднее фазное напряжение, также изменяющееся по синусоиде.
Изменяя с помощью системы управления амплитуду U1 можно регулировать выходное напряжение преобразователя.
При использовании инверторов напряжения для реализации режима рекуперативного торможения асинхронного двигателя необходимо на входе устанавливать реверсивный преобразователь с двумя группами вентилей, что усложняет схему преобразователя и снижает ее надежность. Поэтому в инверторах напряжения обычно предусматривают разрядный резистор R (см. рис. 6), который подключается в режиме торможения транзисторным ключом VT7 и в котором рассеивается энергия торможения.
Существует большое число разновидностей схем преобразователей частоты с автономными инверторами тока и напряжения, которые описаны в соответствующей литературе.
Частотный преобразователь
Мы всегда рады видеть у себя наших старых партнеров и ждем новых.
Доставка во все регионы России!
|